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Abstract—The emergence of connected and automated vehicle
technology has improved the operational efficiency of mixed
traffic systems. This paper studies a two-tier trajectory opti-
mization problem for mixed platooning to improve fuel efficiency,
ride comfort, and operational safety during vehicle operations.
The proposed model follows a two-tier control logic to plan the
trajectory of platooning vehicles with three objectives, including
minimizing fuel consumption, maximizing ride comfort, and
enhancing the anti-disturbance performance of the platoon. The
first is the planning tier, which aims to design the optimal
trajectory for Connected and Automated Vehicles (CAVs) based
on the optimal fuel consumption and comfort and obtain the
expected acceleration curve of CAV. The second is the control
tier, which aims to ensure the safe operation of platooning
vehicles in the presence of uncertain disturbances in real time.
Specifically, we propose a robust tube MPC control method,
which dynamically adjusts the CAV acceleration according to
the reference trajectory obtained by the planning tier to resist
the effects of uncertain disturbances, and the tracking behaviour
of Human-Driven Vehicles (HDVs) is offline solved by the robust
optimal velocity model. Finally, we design simulation experiments
to verify the effectiveness of the proposed two-tier optimization
framework. The experimental results show the effectiveness and
advantages of the two-tier framework in terms of fuel economy,
ride comfort, and robustness against different noise disturbances.

Index Terms—Vehicle Platoon, Connected and Automated
Vehicles, Trajectory Optimisation, Fuel Economy, Ride Comfort,
Tube Model Predictive Control

I. INTRODUCTION

TRANSPORTATION is one of the significant sources
of energy consumption and greenhouse gas emissions.

According to statistics [1], in 2020, transportation accounted
for 32% of the total energy consumption and 27% of the
total emissions in the European Union, with a significant

This research was supported in part by the National Key Research and
Development Program of China under Grant No. 2022YFC3803700, in
part by the National Natural Science Foundation of China under Grant
No. U20A20155, Grant No. 52202391, Grant No. 62061130221, Grant No.
62173012. (Corresponding author: Daxin Tian.)

Peiyu Zhang, Daxin Tian, Jianshan Zhou and Xuting Duan are with the
Ate Key Lab of Intelligent Transportation System, School of Transporta-
tion Science and Engineering, Beihang University, Beijing 100191, China
(e-mail: zpeiyu2@163.com; jianshanzhou@foxmail.com; dtian@buaa.edu.cn;
duanxuting@buaa.edu.cn).

Zhengguo Sheng is with the Department of Engineering and De-
sign, University of Sussex, Richmond, Brighton BN1 9RH, U.K. (e-mail:
z.sheng@sussex.ac.uk).

Dezong Zhao is with the James Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, U.K. (e-mail: dezong.zhao@glasgow.ac.uk).

Dongpu Cao is with the School of Vehicle and Mobility, Tsinghua Univer-
sity, Beijing, 100084, China (e-mail: dongpu.cao@uwaterloo.ca).

portion attributed to road transportation. Despite significant
efforts to alleviate the burden on fuel economy, such as
optimizing vehicle engines and improving road conditions, the
total energy consumption of motor vehicles has continued to
rise in recent years due to the continuously increasing number
of motor vehicles. Moreover, vehicle ride comfort exhibits
typical traffic flow characteristics, which affect the vehicle’s
lateral acceleration and increase consumer experience value
[2], [3]. Therefore, vehicles’ energy consumption and ride
comfort should be carefully considered to improve the current
traffic conditions.

The motion of vehicles plays a vital role in improving
the transportation system, and it has greatly benefited from
emerging Intelligent Connected Vehicle (ICV) technologies
such as wireless communication [4], adaptive cruise control
[5], and speed harmonization [6]. CAVs have demonstrated
significant advantages in traffic safety, efficiency, and energy
consumption, such as the cooperative platooning of multiple
CAVs that can improve road capacity [7]–[9]. However, a
transitional phase of mixed traffic systems must exist in real-
life scenarios comprising CAVs and HDVs. By leveraging
the physical information and interaction between neighbouring
vehicles, CAVs can be considered mobile actuators to induce
the directed motion of surrounding vehicles and thus control
the driving behaviour of mixed traffic platoons. This approach
can effectively enable the safe and efficient operation of
mixed traffic systems. This paper first proposes a bi-objective
trajectory planning model to improve the fuel economy and
ride comfort of the mixed vehicle platoon system.

In a mixed-vehicle platoon system, CAVs typically serve
as mobile leaders, influencing the motion of other vehi-
cles. Vehicle-to-vehicle (V2V) communication is employed
to transmit vehicle information. However, when CAVs track
the trajectory of the preceding mobile leader, they often en-
counter random interference caused by carrier-to-interference,
resulting in the control system’s inability to meet physical
requirements and leading to unstable platoon formation or even
chain collisions [10]. This interference arises from the high
mobility of vehicles, resulting in high Doppler frequency and
inter-carrier interference [11]. Additionally, communication
bandwidth constraints lead to delays in V2V transmission,
contributing to communication delays and ultimately caus-
ing sensor measurement errors [12]. Therefore, CAVs in the
platoon system need to develop distributed robust controllers
resistant to interference to ensure adaptive control of platoon
vehicles under noise interference. Accordingly, we propose
a robust tube control method to ensure the real-time anti-
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interference property of vehicle tracking.
In summary, this study aims to establish a two-tier planning

framework to optimize the motion trajectory of mixed vehicle
platoons. The proposed objectives include minimizing fuel
consumption, maximizing ride comfort, and improving the pla-
toon’s disturbance rejection capability. The first tier is CAV’s
optimal trajectory design, which proposes a bi-objective model
to improve platoon fuel economy and ride comfort and obtain
vehicle acceleration curves. The second tier is for real-time
control purposes to ensure that the vehicle is anti-interference
in trajectory tracking. Precisely, a robust tube controller will
be placed on the CAV to dynamically adjust the vehicle’s
acceleration while the other HDVs perform trajectory tracking,
the tracking behaviour of HDVs is obtained offline through
the optimal speed model. Our contributions are summarized
as follows.

• A novel two-tier optimization framework for mixed vehi-
cle platooning is proposed to improve the platoon’s fuel
economy, ride comfort, and disturbance rejection. At the
planning tier, we design a bi-objective model for CAVs
to enhance the platoon’s fuel economy and ride comfort
and obtain the reference trajectory of the vehicles.

• To ensure the safety of the platoon vehicles in real-
time control, we design a robust Tube MPC controller to
adjust vehicle acceleration to resist uncertain disturbances
dynamically. The robustness can achieve stable tracking
of platoon vehicles and ensure the safety of vehicles.

• We conduct simulations to verify the proposed two-tier
programming model. In addition, we also illustrate that
the proposed method is superior to the other strategies
in terms of anti-interference, fuel efficiency and ride
comfort.

The remaining parts of this paper are organized as follows:
Section II analyzes the related work. Section III provides the
system framework of the two-tier trajectory planning problem.
Section IV presents the CAV dynamics, HDV car-following
model, and offline bi-objective trajectory planning model.
The tube-based robust MPC controller is designed in Section
V. Then, we conduct a series of simulation experiments in
Section VI. Finally, conclusions are drawn, and future research
directions are discussed in Section VII.

II. LITERATURE REVIEW

In recent decades, improving the fuel economy of vehicle
platooning systems has become a significant research focus.
Studies, such as that by reference [13], have found that
formation driving can increase fuel consumption by approx-
imately 5% compared to single-vehicle driving. Therefore,
optimizing the trajectory planning of platooned vehicles is
essential to improve fuel efficiency further. [9] has proposed
a cooperative eco-driving model for mixed vehicle platoon to
improve fuel consumption and reduce idle time. In [14], a
speed planning algorithm is proposed for a platoon of trucks
on a highway. This algorithm uses an integrated fuel time
cost and dynamic programming strategy. The experimental
results demonstrate that the vehicle platoon following this
speed curve achieves better fuel efficiency. [15] investigated

the gasoline consumption and gas emissions of CAVs in
mixed traffic flows when passing through intersections and
proposed a joint optimization framework of traffic signals
and vehicle trajectories to reduce the environmental impact
of these factors. [16] proposed an eco-driving strategy for
mixed platoons of CAVs and HDVs, consisting of offline
planning and online tracking using model predictive control.
The strategy optimizes total fuel consumption by determining
each vehicle’s energy-efficient speed and gearshift references.

In addition to fuel economy, passenger comfort is an essen-
tial aspect of vehicle platooning systems, as it directly affects
passenger satisfaction and safety [17]–[20]. [2] proposed an
MPC-Based cruise adaptive control method for autonomous
vehicles to enhance driving safety and comfort. The approach
planned predicted vehicle control commands for the host
vehicle within a prediction horizon and then computed a
constrained optimization model in the finite time domain.
[21] proposed a bi-objective optimization model to reduce
fuel consumption and improve driver comfort in the mixed
vehicle platoon. A fuzzy logic-based integrated sliding mode
controller designed by [22] and applied to vehicle suspension.
This controller can improve ride comfort by reducing vehicle
vibrations. To enhance fuel efficiency and ride comfort, a bi-
objective optimization strategy is suggested for the planning
stage to achieve the optimal driving path of the vehicle offline.

Although tracking the optimal offline trajectory obtained
by the planning layer can improve fuel efficiency in platoon
vehicles, unexpected disturbances can significantly impact
performance. Real-time trajectory optimization methods that
minimize fuel consumption have been proposed to enhance
robustness, considering uncertainties from other traffic par-
ticipants [23], [24]. However, existing predictive models that
provide information about other transport partners are limited
to the short term, and the real-time trajectory optimization
method may not be optimal as a result [25], [26]. Therefore,
a real-time control method is developed for CAV to resist
uncertain disturbances during trajectory tracking. [27] and
[28] illustrated a two-tier/two-stage optimization framework to
bridge the gap between offline planning and real-time control
layers—the offline planning tier real-time traffic situation by
controlling the CAV to follow a reference trajectory. [29]
proposed a two-level optimal control algorithm that reduces
the fuel consumption of a platoon composed entirely of CAVs.
However, a transition phase must be established for a mixed
traffic system containing CAVs and HDVs [30].

At the control tier, various control methods have been
proposed to deal with the impact of uncertain disturbances on
platooning, such as H∞ control [31], Model Predictive Control
(MPC) [32], Kalman filter [33] and sliding mode control
[34]. In addition, distributed model predictive control has been
widely applied in engineering practice. When the platoon
system was subject to persistent disturbances, conventional
nominal MPC could not solve the physical constraints under
disturbance, leading to uncontrollable platoon systems. Linear
quadratic control is a special case of MPC which can be
effective in regulating linear systems with known dynamics
and noise characteristics, they may struggle to handle nonlin-
earities and uncertain disturbances, limiting their applicability
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in complex real-world systems [35]. In the context of dealing
with uncertain disturbances in platooning, the Kalman filter,
while effective for state estimation, may face limitations in
adequately addressing physical constraints under persistent
disturbances [36]. Inspired by the tube-based model predictive
control method proposed by Mayne and Langson, the control
problem of a mixed vehicle platooning subject to environmen-
tal disturbances and modelling errors was investigated in [37].
They proposed a control method using the multiple integral
observer technique and tube-based model predictive control
and optimizing the control strategy gains using the particle
swarm optimization algorithm. In [38], a tube-based discrete
controller was designed, where the vehicle’s control signal
was determined jointly by feedforward and feedback control.
[39] highlighted the utilization of the Tube Model Predictive
Control (TMPC) approach in the TUM Autonomous Motor-
sport team’s software stack. By incorporating a simplified
friction-limited point mass model and a constraint-tightening
strategy, the proposed Tube MPC method outperforms tradi-
tional tracking controllers. However, there still needs to be a
heterogeneous platoon control method that can simultaneously
address vehicle economy, comfort, and disturbance resistance
within a two-tier optimization framework.

III. TRAJECTORY OPTIMIZATION OF MIXED PLATOON

A. System Architecture

In this study, we address the trajectory optimization problem
for a mixed-vehicle platoon containing CAVs and HDVs. As
shown in Figure 1, we model this integrated optimization
problem into a two-tier model. First, at the planning tier,
the desired trajectory for the mixed platoon is optimized
by minimizing fuel economy and maximizing ride comfort.
Secondly, the control tier is developed to robust tube MPC
strategy to resist random perturbations and to provide real-time
control. More specifically, utilizing the acceleration profile
obtained from the planning stage, a robust adaptive controller
will be installed on the CAVs to regulate the control signal
and ensure safe operations adaptively.

Planning 
Tier

Control 
Tier

Fuel 
consumption

Ride 
comfort

CAV optimal Trajectory 

�(�) = [�(�), �(�), �(�)] Reference:

Robust Tube 
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Disturbance

Control 
Adaptive

:CAV :HDV 

Fig. 1. The system scenario of the considered platoon.

As shown in Figure 1, we propose a fuel economy and
ride comfort-oriented robust controller for the mixed vehicle
platooning system, aiming to improve the fuel efficiency,
comfort, and robustness of the platooning vehicles in uncertain
environments. In the proposed two-tier optimization frame-
work, the dynamics of the CAV are designed by the proposed
robust model predictive control method, and the motion of the
HDV is described by the optimal velocity model. In this paper,
we only consider the longitudinal behaviour of the vehicle.
Below, we first introduce the trajectory planning model of
mixed vehicle formation.

TABLE I
BASIC NOTATIONS IN TRAJECTORY PLANNING

Symbol Description

t Time instant

t0 Initial time

tf Terminal time
I = 1, . . . , I The set of CAVs
J = 1, . . . , J The set of HDVs

pi(t), vi(t), ai(t) Position, velocity and acceleration of CAV i, i ∈ I
pj(t), vj(t), aj(t) Position, velocity and acceleration of HDV j, j ∈ J

ui(t) The control variables of a CAV i, i ∈ I

For HDVs, the car-following model OVM can drive the
vehicle to reach the desired optimal speed. The acceleration
profile aj(t) can be formulated in the following form.

aj(t) = η [Vopt (∆pj(t))− vj(t)] , j ∈ J . (1)

where η is a sensitivity parameter, pj−1 is the position of
vehicle j − 1 and pj is the position of vehicle j. ∆pj(t) =
pj−1(t) − pj(t) is the distance between vehicle j and j − 1
and the speed function Vopt (∆pj(t)) is related to the distance
∆pj(t). in this paper, we adopt the following speed function:

Vopt (∆pj(t)) = κ1 + κ2 tanh[C1(∆pj(t)− L)− C2], (2)

where κ1, κ2, C1 and C2 are the basic parameters. According
to [40], the parameters of OVM are set in this paper: η =
0.85 s−1, κ1 = 6.75m/s, κ2 = 7.91m/s, C1 = 0.13m−1, C2 =
1.57 and L = 4.5m.

B. Trajectory Planning Model
In the mixed vehicle platoon, information such as position

is shared between the CAVs via V2V. The state equation of
CAV i is defined to the following form

ṗi = vi(t), v̇i = ai(t), ȧi = ui(t), i ∈ I, (3)

where ui(t) is the control variable, which is the derivative of
the acceleration ai. In order to obtain the optimal trajectory of
all vehicles in the platoon, we define the state variable X(t)
and the control variable U(t) of this platoon as

X(t) = [pi(t), vi(t), ai(t), · · · , pI(t), vI(t), aI(t)],
U(t) = [ui(t), · · · , uI(t)], i ∈ I.

(4)

Based on equation (4), the system dynamic function is

Ẋ(t) = [vi(t), ai(t), ui(t), · · · , vI(t), aI(t), uI(t)], (5)

where the acceleration aj(t) of HDVs are calculated by (1).
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1) Objective Function: At the planning tier, we will opti-
mize the two objectives of the vehicle platoon, the first is to
minimize the total fuel consumption of the vehicle, and the
second is to maximize the ride comfort. The first objective
function is designed as

H1(U(t)) =

∫ tf

t0

[∑
i∈I

Fi(t)

]
dt. (6)

According to the fuel consumption model proposed by [41],
the instantaneous acceleration and speed can estimate the fuel
consumption rate of all vehicles, its expression is

F =

{
α+ β1PT + β2ma2v, if PT ≥ 0,

α, if PT < 0,
(7)

among that α, β1 and β2 are constants, and PT (t) is the engine
power of the vehicle driveline which is calculated by

PT = max
{
0, τ1v + τ2v

2 + τ3v
3 +mav

}
. (8)

where τ1, τ2 and τ3 are constants, m is the weight
of the vehicle. All parameters in H1(U(t)) are taken
from [41] and α = 0.666mL/s, β1 = 0.072mL/kJ,
β2 = 0.0344mL/

(
kJ ·m/s2

)
, τ1 = 0.269 kN, τ2 =

0.0171 kN/(m/s), τ3 = 0.000672 kN/(m/s)2, m = 1680 kg.
To improve the longitudinal ride comfort of the mixed

platoon, we limit frequent changes in engine speed by reducing
changes in acceleration (i.e. jerk ui(t)) and improve ride
quality. Thus, the second objective function is

H2(U(t)) =

∫ tf

t0

[∑
i∈I

u2
i (t)

] 1
2

dt. (9)

Based on the fuel consumption function (6) and comfort
function (9), The total cost function of our trajectory model
is defined as

min
ui

G(U(t)) = w1H1(U(t)) + w2H2(U(t)), (10)

where w1 and w2 are different weighting coefficients and
they reflect the relative importance of the objectives. To
obtain a trade-off between the two cost functions H1(U(t))
and H2(U(t)), we use a linear weighting multi-objective
optimization method to construct a single cost function [42],
[43]. According to the different weight values of w1 and
w2, the fuel economy and comfort of the formation system
can be observed, which further helps decision-makers choose
different weight coefficients to weigh the two objectives and
obtain the corresponding optimal trajectory.

2) Constraints: The constraints of the trajectory planning
model include four aspects: Speed constraints; Acceleration
constraints; Jerk constraints and Safety constraints. Their
mathematical form has the following form:

v− ≤ vi(t) ≤ v+, i ∈ I; (11)
a− ≤ ai(t) ≤ a+, i ∈ I; (12)
u− ≤ ui(t) ≤ u+, i ∈ I; (13)
ai(t) ≤ min{a−, aj(t)}, i ∈ I, j ∈ J . (14)

where v+, v−, u+, u−, a+, a− indicate the upper bounds and
lower bounds of the speed, acceleration and jerk. The accel-
eration aj(t) is obtained by the OVM model and constraints
ai(t) ≤ min{a−, aj(t)} shows the smoothly of the handover
between the CAVs and HDVs.

Based on the above description, the trajectory planning
model for enhancing both fuel economy and ride comfort of
the mixed platoon is

min
ui

G(U(t))

s.t.: (11), (12), (13) and (14).
(15)

IV. ADAPTIVE CONTROL DESIGN BASED ON ROBUST TUBE
MPC METHOD

Although optimal trajectories (i.e., ideal acceleration pro-
files based on fuel consumption and comfort improvements)
are generated at the planning layer, real-time operation of
CAVs still requires an acceleration adaptation function to cope
with unpredictable traffic disturbances during actual operation.
For example, the lead CAV of the platoon may be disturbed
by uncertain traffic conditions and noise. Therefore, when
there is a random disturbance in the system, the controller
can effectively adjust the acceleration of CAVs and ensure the
safety of formation vehicles.

A. Longitudinal Tracking Dynamics Model for Vehicle Pla-
toon Systems

According to linearization techniques [30] and Zero Order
Hold method [44], we transform the time-continuous model
into a discrete model by a relatively small time interval τ ,
e.g., 0.5 seconds. In addition, we adopt a second-order linear
model of CAV, which is widely used by [35] and [45]. With
the time interval of τ , the discrete dynamic system is described
by: {

pi(t+ 1) = pi(t) + τ · vi(t) + τ2

2 · ai(t);
vi(t+ 1) = vi(t) + τ · ai(t), i ∈ I. (16)

Assuming that the state and acceleration planned by model
(15) are expressed as xr

i (t) = [pri (t), v
r
i (t)]

T and ari (t), the
state deviation of tracking error can be denoted as{

epi (t+ 1) = pi(t)− pri (t)− r · vri (t)− L;
evi (t+ 1) = vi(t)− vri (t), i ∈ I. (17)

where r ≥ τ is a constant representing the reaction time, and
L ≥ 0 is the vehicle length. Then we can deduce[
epi (t+ 1)
evi (t+ 1)

]
=

[
1 τ
0 1

] [
epi (t)
evi (t)

]
+

[
τ2

2
τ

]
ari (t) +

[
−( τ

2

2 + rτ)
−τ

]
ai(t).

(18)

Define the tracking error state variable is x̄i(t), the dynamic
system (18) can be denoted as

xi(t+ 1) = Axi(t) + Bai(t) + Cari (t), (19)

where A =

[
1 τ
0 1

]
, B =

[
−( τ

2

2 + rτ)
−τ

]
, C =

[
τ2

2
τ

]
. However,

deterministic dynamic systems cannot capture the effects of
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uncertain factors and random disturbances in the actual oper-
ating environment. Therefore, a more realistic control model
should include uncertain disturbance w(t), adding w(t) to the
system (19), we further derive

xi(t+ 1) = Axi(t) + Bai(t) + Cari (t) + w(t), (20)

where w(t) is uncertain disturbance during the time step
(tτ, (t+1)τ ] which is defined as the measurement error of the
sensor [12]. Assumed that the uncertain disturbances belong
to a set W, i.e.,

w(k) ∈ W =
{
R2 : ∥w(k)∥∞ ≤ Ω

}
. (21)

In order to facilitate the following analysis, we define the
nominal tracking error as

x̄i(t+ 1) = Ax̄i(t) + Bāi(t) + Cari (t), (22)

and the prediction uncertainty as

x̃i(t) = xi(t)− x̄i(t). (23)

In addition, we also need to consider the basic constraints
on the state variable xi(t) and control variable ui(t) of CAV
i. All the constraints are summarized as follows.

epmin ≤ epi (t) ≤ epmax, (24)

among that epmin and epmaxare the lower and upper bounds of
position tracking error for vehicle i.

evmin ≤ epi (t) ≤ evmax, (25)

among that evmin and evmasare the lower and upper bounds of
speed tracking error for vehicle i.

amin ≤ ai(t) ≤ amax, (26)

among that amin and amax are the lower and upper bounds of
acceleration. By the constraints (24) and (25), we can drive
the state constraint as follows

x− ≤ xi(t) ≤ x+, (27)

where x− = [epmin, e
v
min]

T, x+ = [epmax, evmax]
T. In order to

simplify the notation, we define X and U as the sets of states
and control constraints, respectively, such that xi(t) ∈ X and
ai(t) ∈ U holds true for all values of t. Based on Equation
(26) and (27), the physical constraints can be integrated as{

X = {x : Axx ≤ bx} ;
U = {a : Aaa ≤ ba} .

(28)

where Ax = col {I4×4,−I4×4} and bx = col {x+,−x−},
respectively. Aa and ba are defined as Aa = col {1,−1} and
ba = col {amax,−amin}, respectively.

B. Robust Tube MPC Formulation

In order to resist the influence of uncertain disturbances,
we propose a tube-based model predictive control method to
adjust the vehicle acceleration obtained by the planning tier.
The framework is based on the Tube Model Predictive Control
(TMPC) method, widely adopted in the control community
due to its ability to handle uncertainties and constraints.
The control approach illustrated in Figure (2) comprises two

primary elements: feedback control and feedforward control.
Through the feedforward control, a sequence of set points,
which is called a “tube” and defines the nominal tracking error
of the system, is determined. The feedback control, however,
dynamically adjusts the actual tracking error, ensuring that it
remains within the boundaries set by the tube. This approach
allows the system to achieve the desired performance while
considering the presence of external disturbances.

: The disturbance invariant set

: Terminal constraint set

: The designed “Tube” 

: Constraint feasible area

: Nomial solution

: Current solution

Fig. 2. Illustration of tube MPC method.

For the CAV i, the actual acceleration by

a∗i (t) = āi(t) + ãi(t), (29)

at every time step k, āi(k) is determined by the feedforward
control and ãi(k) is determined by the feedback control. The
feedback control ensures that the actual tracking error remains
within the constraints defined by the tube, guaranteeing all
constraints’ satisfaction.

Specifically, we design a discrete linear quadratic regulator
to solve the feedback control. Then, according to constraints
(26) and (27), the feasible set is constructed for xi(t). Using
the ϵ-approximation method, the minimum Robust Positive
Invariant set (mRPI) is defined and estimated. Finally, the
nominal trajectory, or feed-forward control, is determined by
computing the optimization problem with a strict feasible set.

1) Feedback Control Law: In order to achieve a closed-
loop effect for each controller, the following linear feedback
control strategy is used

ãi(t) = Kx̃i(t), i ∈ I, (30)

where K is gain matrix. The principle of this control strategy
is to multiply the error state by the gain matrix K to determine
the true feedback control signal of the vehicle i. Furthermore,
we employ the concept of rolling optimization to address the
model, allowing for the continual updating of the vehicle’s
state error, x̃i(t), with each iteration. For each CAV i ∈ I at
time t, substituting (30) into (20), we can obtain the following
state equation

x̃i(t+ 1) =(A + BK)x̃i(t) + Bãi(t) + Cari (t),
=AK x̃i(t) + Bãi(t) + Cari (t) + w(t).

(31)

where AK = A+BK. According to the literature [46], we can
solve the feedback gain K by a linear quadratic programming
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model, the model is as follows

min
K

Y =

T∑
t=0

{
x̃T
i (t)Qx̃i(t) + ãTi (t)Rãi(t)

}
, (32)

where Q =

[
Q1 0
0 Q2

]
is a weight matrix that is positive

definite and symmetric, and R > 0.
2) Minimal Robust Positively Invariant Set: The robust

positively invariant (RPI) set is defined as a set in which xi(t)
can be bounded by the feedback control in Equation (30). This
has been proven in [47].

Definition 1: (RPI set): The set Z ⊂ R2 is a robust posi-
tively invariant (RPI) set of the system (31) if AKxi + w ∈ Z
for all xi ∈ Z and all w ∈ W, i.e., if and only if AKZ⊕W ⊂ Z.

As shown in Figure (2), the size of the tube in the blue
area is determined by this RPI set. In order to prevent the
result from being too conservative, the minimum RPI set can
be defined as [47]:

Definition 2: (mRPI set): The minimal Robust Positively
Invariant (mRPI) set F is a subset of the robust positively
invariant (RPI) Z set of (31) that is contained in every closed
RPI set of (31).

In general, a specific representation of F is not available.
Based on ϵ-approximation method [48], the equivalently form
of mRPI set is F = lims→∞ Fs, where

Fs =

s−1⊕
l=0

Al
KW, F0 = {0}. (33)

We obtained the mRPI set F through the above approx-
imation method, and the feedforward control āi(t) will be
designed based on this convex set.

3) Terminal constraints: The feedforward controller is de-
signed to resist the effects of random disturbances by utilizing
a convex optimization approach that ensures compliance with
the stringent sets derived from tube methods. The purpose of
the feedforward control is to find a tube that adheres to all
constraints described in Equation (27), where the constraints
can be represented by

x ∈ X,a ∈ U. (34)

For the nominal tracking error x̄i, it holds under the following
constraints

X̄ = X⊖ F, Ū = U⊖KF. (35)

In order to obtain āi(t), the optimization problem can be
formulated as:

min
āi(1),··· ,āi(Np)

L =

Np∑
t=1

{
x̄T
i (t)Px̄i(t) + āTi (t)V āi(t)

}
s.t. x̄i(t+ 1) = Ax̄i(t) + Bāi(t) + Cari (t);

x̄i(t) ∈ X⊖ F;
āi(t) ∈ U⊖KF;
x̄i (Np) = 0;

āi (Np) = 0.

(36)

where t = 1, . . . , Np, P and V are weight factors which are
symmetric and positive. The construction of the model is based

Algorithm 1: The Algorithm Design for Two-tier
Optimization

Input:Initial Status; Basic parameters.
Planning tier:
1. Obtain the position pri , speed vri and acceleration

trajectory ari of the leading vehicle under the
trajectory planning model (15);

2. Define the initial state of every vehicle in the
platoon.

Control tier:
1. Obtain the feedback gain K by solving the problem

(30);
2. Construct uncertain set W;
3. Obtain the mRPI set F by ϵ-approximation method

and compute the tight constraint sets X̄ and Ū;
4. Real-time control:
while t ≤ Np do

Compute the feedforward control āi(k) and obtain
the nominal state x̄i(t) by solving optimization
problem (36);

Compute the feedback control ãi(t) ;
Generate the actual control a∗i (t) = āi + ãi(t);
Implement the control a∗i (1) to the system (20);
Compute the acceleration of HDVs;
Update xi(t+ 1);
Update t = t+ 1;

end
Output: The real-time control of CAVs and HDVs.

on the prediction principle, in which the choice of prediction
time horizon Np and control time horizon Nc will affect the
computational efficiency of the algorithm. On the one hand,
it is important to choose a prediction horizon that is large
enough to predict control steps for multiple periods accurately.
When the prediction period increases, the controller of CAV
i can predict longer distances, and its performance improves
accordingly. On the other hand, if the prediction time horizon
Np and time horizon Nc are too long, it may increase the
calculation time of optimization and the difficulty of realizing
control input online. In the experiment section, we will verify
the computational performance of the selected prediction and
control time domains to ensure the real-time requirements of
the formation control system.

For the following behaviour of HDV, we will solve the OVM
model (1) to obtain the acceleration of the vehicle. However,
due to the measurement error caused by the sensor in the
system, ∆pj(t) is also uncertain in the equation (1): aj(t) =
η [Vopt (∆pj(t))− vj(t)] , j ∈ J . Therefore assume ∆pj(t) =
pj−1(t)− pj(t) + wp, where wp is uncertain disturbance and
wp ∈ [wmin, wmax]. wmin and wmax are the known upper and
lower bounds of the disturbance respectively. Based on the
worst-case principle [49], [50], we take the lower bound of
∆pj(t) as the real value of ∆pj(t), i.e., ∆pj(t) = pj−1(t)−
pj(t) − wmin. This worst-case scenario-based robust control
method is also an effective way to resist disturbances and this
processing method also makes HDV have a certain degree
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Fig. 3. The optimal trajectory of the leading CAV at planning tier.

of robustness. Overall, the design of the proposed two-tier
optimization algorithm is summarized as Algorithm 1.

V. SIMULATION RESULTS

Case1:

Case2:

Case3:

: HDV: CAV : HDV sub-platoon

Fig. 4. The platoon configuration in our paper.

In this section, we conduct numerical experiments to verify
the performance of the proposed two-tier optimization frame-
work. Firstly, the trajectory of the CAV is obtained based on
a bi-objective optimization model, aiming to achieve the best
fuel economy and ride comfort at the planning tier. Secondly,
we design experiments to validate the effectiveness of the
robust tube MPC control algorithm based on the reference
trajectory. Third, experimental comparisons are carried out
under three different optimization methods. The MATLAB
modelling toolbox and YALMIP solve the two-tier optimiza-
tion model. In addition, Three types of mixed traffic streams
are selected for the experiment, as shown in Figure 4. Case 1
and Case 2 represent different positions of CAVs and HDVs
in the mixed platoon, while Case 1 and Case 3 represent
different penetration rates of CAVs in the platoon. Cases 1,
2, and 3 depict various positions of CAVs and HDVs in the
mixed platoon and different penetration rates of CAVs.

A. Experimental Results of CAV (Planning Tier)

The basic parameters set used in the first tier are the
following: The minimum and maximum speed v− = 0m/s,
v+ = 40m/s; The maximum acceleration and minimum
acceleration a− = −2m/s2, a+ = 2m/s2; The maximum
control and minimum control u− = −3m/s3, u+ = 3m/s3;
The initial time and terminal time t0 = 0 s, tf = 30 s.

w 1 = 0
,  w 2 = 1

. 0

w 1 = 0
. 1 , w

2 = 0
. 9

w 1 = 0
. 2 , w

2 = 0
. 8

w 1 = 0
. 3 , w

2 = 0
. 7

w 1 = 0
. 4 , w

2 = 0
. 6

w 1 = 0
. 5 , w

2 = 0
. 5

w 1 = 0
. 6 , w

2 = 0
. 4

w 1 = 0
. 7 , w

2 = 0
. 3

w 1 = 0
. 8 , w

2 = 0
. 2

w 1 = 0
. 9 , w

2 = 0
. 1

w 1 = 1
. 0 , w

2 = 0
7 8
7 9
8 0
8 1
8 2
8 3
8 4
8 5
8 6
8 7  F u e l  C o n s u m p t i o n

 R i d e  C o m f o r t

Fu
el C

ons
um

pti
on

1 6

1 8

2 0

2 2

2 4

2 6

2 8

3 0

3 2

Rid
e C

om
for

t

Fig. 5. The objective value under different weights.

TABLE II
PARAMETERS SETTINGS IN CONTROL TIER

Parameter Value
τ 0.5 s

r 0.5 s

Np 2.5 s

Nc 0.5 s

amin, amax −3m/s2, +3m/s2

evmin, evmax −5m/s, +5m/s

epmin, epmax −2m, +2m

L 3.5m
V 1
P diag[1, 1]
W1 [0.5, 0.5; 0.5, -0.5; -0.5, -0.5; -0.5, 0.5]*0.3
W2 [1, 1; 1, -1; -1, -1; -1, 1]*0.5

As can be seen from Figure 5, the choice of weighting co-
efficients w1 and w2 represents how decision-makers balance
fuel consumption and ride comfort. Therefore, we conducted
experiments on different values of w1 and w2, where they
belong to [0, 1] and w1 + w2 = 1. Figure 5 illustrates the
fuel consumption and ride comfort of the CAV under different
objective weightings. From the figure, it can be observed that
when we only focus on optimizing the ride comfort of the
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Fig. 6. The results of the mixed platoon under disturbance type I.

(a) Disturbance Type I (b) Disturbance Type II

Fig. 7. The accumulated uncertainty of the platoon system.

vehicle (w1 = 0, w2 = 1), the fuel consumption is maximum,
i.e., 86.4973mL. On the other hand, when only optimizing the
fuel consumption objective of the vehicle (w1 = 1, w2 = 0),
the ride comfort is poorest, i.e., 30.8429m/s3. As can be
seen from Figure 5, w1 = 0.6, w2 = 0.4 is a trade-off point
of the system, the fuel economy and comfort objectives are
simultaneously optimized, with the fuel consumption objective

of 79.7316mL and ride comfort of 17.5055m/s3. By using
the bi-objective optimization model, the fuel consumption of
CAV is reduced by 7.85%, and the ride comfort is improved
by 5.75%. In addition, the acceleration, speed and position by
solving the model (15) are obtained in Figure 3. Figure 3a
illustrates the boundary constraints of acceleration with black
dashed lines. Based on this, we obtain the optimal acceleration
trajectory for improving fuel consumption and ride comfort at
the planning tier.

B. Real-Time Robust control of mixed platoon (Control Tier)

To achieve long-term optimization of the mixed vehicle
platoon, we apply local adaptation control to the real-time
trajectory of the vehicles to cope with the stochastic distur-
bances existing in the traffic environment. At the control tier,
we consider three specific mixed vehicle platoon systems that
consist of CAVs and HDVs in Figure 4, and the reference
trajectory (indexed from 0) of the CAV is obtained at the
planning tier (Figure 3). For the control layer, the initial speed
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Fig. 8. The results of the mixed platoon under disturbance type II.

TABLE III
THE OBJECTIVES UNDER THREE CASES

Disturbance Type I Disturbance Type II
Obj1 [mL] Obj2 [m/s3] Obj1 [mL] Obj2 [m/s3]

Case 1 479.2138 139.0117 479.5717 143.2312
Case 2 475.5198 137.2966 474.9894 141.6586
Case 3 470.2836 130.2966 474.6346 148.7766

of all vehicles is 0m/s. The initial longitudinal positions are
generated in the range [-200,0]m, and the distance between
vehicles is at least 20m. For the HDVs, the value of wp

belongs to [−0.1, 0.1]m. Other parameters are set in Table II.
To demonstrate the advantages of the proposed robust tube-

based model predictive control method, we conduct simulation
experiments under different types of random disturbances.
Specifically, we chose two convex sets of different sizes as
shown in subfigures (7a) and (7b), and simulated two types

of external disturbances under each convex set. Figures 6
and 8 depict the trajectories of mixed vehicle platoons under
two types of disturbances. Specifically, Figure 6 presents
the acceleration, velocity, and position of three types of
mixed platoons under small-scale random disturbances using
the robust tube control method. To facilitate visualization,
the acceleration trajectories of all platoons of vehicles are
shown. In subfigures (6a)-(6c), the black dotted line represents
the reference acceleration obtained from the planning tier,
while the red curve denotes the real-time control acceleration
of CAV. It is evident that the CAV promptly responds to
uncertain disturbances in the system under the robust tube
control approach, and its acceleration is strictly constrained
within the designated range [-3m/s2, 3m/s2]. Moreover, as
shown in Figures 6d-6i, each HDV can track the velocity
of its preceding vehicle. Despite the presence of external
disturbances, all vehicles can form a stable platoon without
collisions. Similarly, Figure 8 displays the trajectory of the
mixed platoon subject to large-scale random perturbations. The
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mixed vehicle platoon in all three cases exhibits robustness to
uncertain disturbances, limiting acceleration strictly within the
specified range and maintaining a stable formation. Addition-
ally, Table III provides an overview of the fuel economy and
ride comfort objectives for the mixed vehicle platoon under
two types of disturbances. The results reveal that different
types of vehicle platoons have different objectives, and the
mixed vehicle platoon system in Case 3 achieves the lowest
fuel consumption and the highest comfort level. Experimental
results can help decision-makers choose appropriate platoon
configurations in different environments.

C. Computation performance of Algorithm 1

Furthermore, we evaluate the computational performance of
Algorithm 1 under two perturbation types. In Figure 12, we
show the execution time of three platoon cases under two
disturbance types. It can be seen from the figure that when
Np = 2.5 s, the execution time under Algorithm 1 does
not exceed the control horizon Nc = 0.5 s. For instance,
the average computation times of the three formation systems
under large-scale random disturbances are 2.5 ms, 4.7 ms, and
7.29 ms, which are much smaller than 0.5 s. Therefore, the
proposed two-tier optimization algorithm can control vehicle
operation in real-time.
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Fig. 12. Execution time of three cases under two disturbance types.

D. Comparison Experiment

To assess the efficacy of the proposed dual-tier optimization
approach and enhance the trustworthiness of simulation out-
comes, we undertake a comparative analysis involving three
baseline strategies. Firstly, to capture the fuel efficiency and
ride comfort aspects of the proposed method, we compare it
against two other single-objective methods. Secondly, in order
to gauge the disturbance resilience of the RTMPC controller,
we compare it to the nominal MPC (NMPC) under the assump-
tion of known optimal vehicle trajectory. Additionally, we
conduct experiments across three distinct scenarios (CASEs)
to investigate the influence of CAV penetration on formation
effects. The three benchmark strategies are described as fol-
lows.
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Fig. 9. The comparison of ride comfort under different methods (the smoother the better).



11

B O T O + R T M P C
S O F C + R T M P C

S O R C + R T M P C
B O T O + N M P C0

2 0

4 0

6 0

8 0

1 0 0

1 2 0
Fu

el C
ons

um
pti

on 
(m

L)
 R e f  C A V 1  H D V 1  H D V 2  H D V 3  C A V 2

4 7 5 . 5 1 9 8
 

4 8 4 . 3 7 3 1  5 0 7 . 2 1 3 9
5 1 4 . 2 9 9 3  

(a) Case1

B O T O + R T M P C
S O F C + R T M P C

S O R C + R T M P C
B O T O + N M P C0

2 0

4 0

6 0

8 0

1 0 0

1 2 0
 R e f  C A V 1  H D V 1  H D V 2  H D V 3  H D V 4

4 7 9 . 2 1 3 8  4 7 7 . 9 3 7 4  5 0 8 . 3 4 6 6

5 8 6 . 6 1 8 6

Fu
el C

ons
um

pti
on 

(m
L)

(b) Case2

B O T O + R T M P C
S O F C + R T M P C

S O R C + R T M P C
B O T O + N M P C0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

Fu
el C

ons
um

pti
on 

(m
L)

 R e f  C A V 1  C A V 2  C A V 3  H D V 1  H D V 2

4 7 0 . 2 8 3 6
 

4 7 2 . 6 6 5 7
 

5 0 2 . 9 6 3 9
 

5 1 6 . 9 8 2 6
 

(c) Case3

Fig. 10. The comparison of fuel economy under different methods (the smaller the better).
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Fig. 11. The comparison of platoon safety under different methods.

• BOTO+RTMPC: The proposed two-tier optimization
strategy presents a bi-objective trajectory optimization
model at the planning tier to improve the fuel economy
and ride comfort of the mixed vehicle platoon and designs
a robust tube MPC controller at the control tier to
optimize the vehicle acceleration in real-time to resist
uncertain disturbances.

• SOFC+RTMPC: At the planning tier, we obtain the
reference trajectory by optimizing the single-objective
fuel consumption model and then design a robust tube
controller in the control layer to optimize the vehicle
acceleration in real time to resist uncertain disturbances.

• SORC+RTMPC: At the planning tier, we solve the
single-objective ride comfort model to obtain the refer-
ence trajectory and then design a robust tube controller
in the control layer to optimize the vehicle acceleration
in real time to resist uncertain disturbances.

• EDO+NMPC: At the planning tier, the reference trajec-
tory of the vehicle is obtained based on the eco-driving
model, and the nominal MPC is used to control the CAVs
to adjust the speed in real time. There is no ability to cope
with uncertainty in this strategy.

Subsequently, we compare the four methodologies across
three key facets: ride comfort, fuel efficiency, and formation

safety (pertaining to disturbance resilience) in the presence
of minor disturbances. As described in [2], frequent accelera-
tion/deceleration can lead to discomfort for passengers and
drivers alike. Hence, we visually present the accelerations
associated with the four approaches in three cases, as de-
picted in Figure 9, to facilitate an experiential assessment
of the system’s comfort within the formation and the fuel
consumption of the vehicle platoon under different methods
can be shown in Figure 10. As illustrated in Figures 9 and
10, the proposed BOTO+RTMPC method exhibits superior
performance in terms of both vehicle economy and com-
fort when compared to the two single-objective optimization
methods, namely SOFC+RTMPC (solely focused on fuel con-
sumption) and SOCR+RTMPC (solely focused on comfort).
Notably, the BOTO+RTMPC method strikes a commendable
balance between these performance aspects, reducing fuel
consumption for the entire formation system while maintain-
ing a relatively comfortable driving environment. Notably,
the BOTO+RTMPC method strikes a commendable balance
between these performance aspects, reducing fuel consumption
for the entire formation system while maintaining a relatively
comfortable driving environment. Specifically, from subfigures
(9f) and (10b), when compared to the SOFC+RTMPC method
(solely focused on fuel consumption), the proposed method
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substantially enhances the overall vehicle comfort experience,
even though there is a slight increase in fuel consumption.
Moreover, in comparison to the SORC+RTMPC method, the
proposed approach achieves a remarkable 5.73% reduction in
fuel consumption while simultaneously ensuring ride comfort,
as demonstrated in Case 2. Furthermore, we examined the
impact of varying CAV penetration rates on the performance
of the formation vehicles. As can be observed from Figure
12, when the penetration of CAVs is higher (case 3), the
fuel consumption of the whole formation system is smaller.
Overall, the experimental results show that the proposed
BOTO+RTMPC method ensures formation comfort while si-
multaneously reducing the overall system fuel consumption.

To assess the robustness of the proposed controller, we
conduct a comparison between the RTMPC controller and
NMPC under the same optimal trajectory. As depicted in
Figure 11, we show the position of the vehicles in the platoon
under BOTO+RTMPC and BOTO+NMPC methods in the
presence of minor disturbances. With the BOTO+RTMPC
method, all vehicles successfully adhere to the safety con-
straints, ensuring a safe driving environment. Conversely, with
the BOTO+NMPC method, which lacks robust disturbance
mitigation capabilities, the inter-vehicle distance is getting
smaller and smaller, thereby posing a risk of collisions during
driving. Overall, our two-tier optimization model achieves op-
timal trajectory planning by considering fuel consumption and
ride comfort at the planning tier. Additionally, we incorporate
robust adaptive control at the control tier to address uncertain
disturbances effectively. Our experimental results demonstrate
that the proposed two-tier framework can effectively manage
uncertain disturbances while maintaining the fuel economy
and ride comfort of the mixed vehicle platoon. However, it’s
important to acknowledge potential limitations related to the
robustness of our approach. Factors such as communication
interruption and hardware failures may impact the performance
of our system in real-world scenarios, such as Network con-
gestion and hardware malfunction. Despite these challenges,
we remain committed to refining our approach and addressing
these limitations to enhance the reliability and robustness of
our system in practical applications.

VI. CONCLUSION AND FUTURE WORK

A multi-objective control framework for a mixed-vehicle
platooning system was proposed in this paper. The main
objectives of the framework were to achieve minimum fuel
consumption, maximum passenger comfort, and robustness of
the platoon. At the offline planning tier, the optimal trajectory
was generated for the platoon of hybrid vehicles based on their
future routes and driving characteristics, which is aimed at
optimizing both fuel economy and passenger comfort. More-
over, we adopted OVM to describe and predict the trajectory
of HDVs in the platooning system. In the real-time control
tier, a robust tube-based controller based on distributed MPC
was designed to address the uncertainties and interferences
in the platoon system. The controller can dynamically adjust
the acceleration of each vehicle to improve the robustness
and maintain the stability of the platoon. Finally, extensive

simulation experiments were carried out to illustrate the ef-
ficacy of the proposed two-tier optimization framework in
reducing fuel consumption, improving passenger comfort, and
ensuring platoon safety. In the future, we will explore several
research directions, including 1) verifying the performance
of the proposed mixed vehicle platoon system through field
testing; 2) investigating the communication security issues of
the system, and 3) developing prediction models for HDVs
further to improve the control performance of the platoon
system.
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